A brief tour of the Local Langlands Correspondence

Beth Romano, KCL

I. The local Langlands correspondence: my perspective

The local Langlands correspondence predicts:

$$
\begin{array}{c}\n \nearrow \text{resp. of } \\
 \searrow \text{adic } \text{groups} \\
 \searrow \text{cycle } \text{groups} \\
 \searrow \text{Complex Lie theory} \\
 \searrow \text{Complex Lie theory
$$

Where does the LLC come from?

Local class field theory (Hasse, 1930)

There is an explicit bijection

such that

 $Gal(L/\mathbb{Q}_p)\simeq \mathbb{Q}_p^{\times}/N(L^{\times}).$

What about nonabelian exts? From CFT to LLC W the Weil group of \mathbb{Q}_p $\mathbb{W} \subseteq \bigoplus_{\alpha} \mathbb{Q}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ $\begin{pmatrix} \n\epsilon & \epsilon \n\end{pmatrix}$

representations
 $\begin{pmatrix} \n\overline{GL_1(\mathbb{Q}_p)} \\ \n\end{pmatrix}$ $\begin{pmatrix} \text{Characters} \\ \n\overline{U} & \epsilon \n\end{pmatrix}$
 $\begin{pmatrix} \epsilon & \epsilon \n\end{pmatrix}$ ن(۵*ون*
h.*r*enr with Idea of how? Treplace only treplace only as replace
GC1 with other with other control 8ps ' l / Qp [≈] Gally ^p) $\alpha_{p/N(L^{x})} \approx$ Gall $L(\mathcal{Q}_{p})$ eps of
Gal(L/Q_p) ,} { reps of S reps of
{ $\varpi_{\mathcal{P}}^{\mathbf{x}}$ /N(L* こつ $\begin{array}{ccc} \text{c} & \text{c} & \text{d} \\ \text{c} & \text{c} & \text{e} & \text{e} \\ \text{c} & \text{c} & \text{d} & \text{d} \end{array} \quad \text{w} \longrightarrow \text{GaICV}_{\mathcal{R}_{p}} \longrightarrow \mathbb{C}^{\times}$

The LLC, more explicitly

G split, simple connected reductive group over \mathbb{Q}_p ex $\mathbb{G} = \text{SL}_{n_1}$ $\text{PSL}_{\mathcal{U}}$
 $G = \mathbf{G}(\mathbb{Q}_p)$ SL_{n_1} GL_{n_2} SL_{n_3} GL_{n_4}

$$
G^{\vee} \text{ dual group of } G \text{ (C-points)}
$$
\n
$$
\text{g} \leq G = \text{Sh}(\text{Q}_p) \implies G^{\vee} = \text{RGL}_n(\text{Q})
$$
\n
$$
G = \text{SO}_{2n+1}(\text{Q}_p) \implies G^{\vee} = \text{Sp}_{2n}(\text{Q})
$$

The LLC predicts an explicit map
\n
$$
\begin{cases}\n\text{smooth/representations} \\
\text{of } G\n\end{cases} \longrightarrow \begin{cases}\n\text{Langlands parameters} \\
\varphi: \mathcal{W} \times \text{SL}_2(\mathbb{C}) \rightarrow G^{\vee}\n\end{cases}
$$

satisfying certain properties.

 \P . Depth Suppose PLW) is finite. => P defermines a finite Galois ext LP/Qp. $GallL\varphi/\varpi_{p}) \cong \varphi(W)$.

"wildly ranified" Gal. Grp is a p-group. (Lq)^{tr} "tanaly ramified"
(Lq)^{tr} "tanaly ramified"
(Lq)^{tr} "tanaly ramified"
(Lq)^{un} "unramified"
) cyclic

$$
\begin{cases}\n\text{smooth'representations} \\
\text{of } G\n\end{cases}\n\longrightarrow\n\begin{cases}\n\text{Langlands parameters} \\
\varphi: W \times SL_2(\mathbb{C}) \to G^{\vee}\n\end{cases}
$$
\n
$$
\begin{cases}\n\text{mod} \\
\omega \text{dS}^{4} \\
\omega \text{
$$

What reps do these correspond to?

G has "May-Prased filters" (
$$
\mathbb{Z}_p \supseteq p\mathbb{Z}_p \supseteq p^2\mathbb{Z}_p \supseteq \ldots
$$
)

has "May-Prased filters" (
$$
\mathbb{Z}_p \supseteq p\mathbb{Z}_q \supseteq p^2\mathbb{Z}_p
$$

\n $\mathcal{L}_1(\mathbb{Z}_p) \geq \frac{(1+p\mathbb{Z}_p - p\mathbb{Z}_p)}{p\mathbb{Z}_p - 1 + p\mathbb{Z}_p} \geq \frac{(1+p^2\mathbb{Z}_p - p^2\mathbb{Z}_p}{p^2\mathbb{Z}_p - 1 + p^2\mathbb{Z}_p}) \geq ...$
\n \mathbb{Z}_p
\n \mathbb{Z}_p

Given a smooth irrep V of G, can use M-P filtrations to define depth of V. Id_{QQ} : For which r is $V^R \neq 0$? ex \vee is depth ex \circ if \exists a parahoric P s.7. ✓ R \neq \bigcirc .

Unramified LLC
\n
$$
\varphi: W \times SL_{2}(\mathbb{C}) \longrightarrow G^{\vee}
$$

\nIf φ is unramified, then φ is coupledly determined by:
\n φ (frob) = s semismpo ele. φ G^V
\n φ ((b₁)) = u unipdent ele af G^V

$$
5.7
$$
, $5.2 = 12$

What's known?
\n
$$
= 200
$$
 uniformly correspond to two been defined.
\n
$$
= A
$$
 potential LLCu, was been defined.
\n
$$
= 8h11
$$
 need to check desired properties of the CLC.
\n
$$
= SL_{2}(P_{p})
$$
 $P_{p_{1}} \approx SL_{2}(P_{p})$
\n
$$
P_{1}
$$

 $\sqrt{2}$. Positive-depth representations Positive-depth representations

If p >>0, then we know how to get all irreps of G. IP G is classical \cdots - - - - - - - . and p = 2 But if p is small and G is exceptional, we don't.

